Identify which learning objectives you need to review before your midterm. ONLY do the last column after you've checked the answer key.

I can statement	Question that you must answer	Only check one of the boxes to the right after you've doe the question and checked it.	YES. Got it.	Needs review	NOPE. Not yet.
	Definitions: atom - smallest particle of matter that retains the properties of an element				
1. I can define the following: atom, element, compound, mixture	element -a substance that cannot be broken down into a simpler substance compound - two or more elements chemically combined in a fixed ratio mixture - two or more substances physically combined in a variable ratio				

I can statement	Question that you must answer	YES. Got it.	Needs review	NOPE. Not yet.
4. I can define homogeneous mixture and heterogeneous mixture in terms of particle distribution.	Definitions: homogeneous mixture - two or more substances physically combined with a uniform distribution of particles heterogeneous mixture- two or more substances physically combined with a non-uniform (clumpy) distribution of particles			
5. I can give an example of homogeneous and heterogeneous mixtures.	Two examples of homogeneous mixtures: a. brass b. a pitcher of Kool-Aid Two examples of heterogeneous mixtures: a. snickers bar b. soil			
6. I can classify a property as physical or chemical.	Write "P" for physical or "C" for chemical on the line provided. ___copper (II) sulfate is blue. C copper reacts with oxygen. \qquad copper can be made into wire. \qquad P copper has a density of $8.96 \mathrm{~g} / \mathrm{cm}^{3}$. P _ copper melts at 1358 K . \qquad copper reacts with nitric acid. P copper doesn't dissolve in water.			
7. I can classify a change as physical or chemical.	Write "P" for physical or "C" for chemical on the line provided.			
8. In a particle diagram, I can distinguish between a physical change and a chemical change.	Substance A Circle the particle diagram that best represents Substance A after a physical change has occurred.			

I can statement	Question that you must answer	YES. Got it.	Needs review	NOPE. Not yet.
9. I can determine how matter will be separated using filtration.	When a mixture of sand, salt, sugar, and water is filtered, what passes through the filter? salt, sugar, and water			
10. I can describe how matter can be separated using distillation.	Which physical property makes it possible to separate the components of crude oil by means of distillation? difference in boiling points			
11. I can state which separation process (decanting, filtering, distilling, chromatography, or evaporating) is best for a given situation.	To separate a mixture of salt and water, the best method of separation would be_evaporation_. To separate a mixture of ethanol and water, the best method of separation would be \qquad distillation To separate a mixture of food coloring dyes, the best method of separation would be \qquad chromatography . To separate a mixture of oil and water, the best method of separation would be decanting \qquad .			
12. I can define allotrope. (diamond and graphite are examples)	Defintion: allotrope - different forms of the same element that possess different molecular structures			
13. I can state the differences between two allotropes of the same element.	Two allotropes of the same element have different molecular \qquad structures and therefore have different physical and chemical properties.			

Station 2 Review Midterm: Gases \& phases of matter (subtopic within Matter unit)
Identify which learning objectives you need to review before your midterm. ONLY do the last column after you've checked the answer key.

I can statement	Question that you must answer	Only check one of the boxes to the right after you've doe the question and checked it.	YES. Got it.	Needs review	NOPE. Not yet.
1. I can state the 5 parts of the Kinetic Molecular Theory.	The five parts of the Kinetic Molecular Theory are: a. Gases consist of tiny particles. b. The size of the particles is so small compared to the space between the particles that the volume of the actual gas particles is negligible. c. Gas particles are in constant, random, straight-line motion, colliding with the walls of the container. These collisions create pressure. d. Gas particles have no intermolecular forces (IMF). e. The average kinetic energy of gas particles is directly proportional to their Kelvin temperature.				
2. I can define an ideal gas.	Definition: ideal gas -any gas Ideal gases are th Hydrogen and hel temperatures and	hat conforms to all of the parts of the KMT. retical although some gases are close. m are the closest to ideal gases at all essures.			
3. I can state the conditions of pressure and temperature under which a gas will act "ideally".	A gas will act mo pressure and \qquad high	"ideally" under the conditions of low \qquad temperature.			
4. I can state the two elements that act ideally most of the time.	The two elemen \qquad hydrogen	at act ideally most of the time are \& \qquad helium -			
5. I can explain how pressure is created by a gas.	What causes gas Collisions with th	olecules to create pressure? e walls of the container.			
6. I can state the relationship between pressure and volume for gases (assuming constant temperature).	At constant tempe volume decreases	ture, as the pressure on a gas increases, the			
7. I can state the relationship between temperature and volume for gases (assuming constant pressure).	At constant pres volume increases	as the temperature on a gas increases, the			

I can statement	Question that you must answer				YES. Got it.	Needs review	NOPE. Not yet.
8. I can state the relationship between temperature and pressure for gases (assuming constant volume).	In a fixed container (AKA "has constant volume), as the temperature on a gas increases, the pressure \qquad increases \qquad .						
9. I can state Avogadro's Hypothesis.	Avogadro's Hypothesis says two samples of an ideal gas, if they have the same temperature, pressure, and volume, will contain the same number of molecules.						
10. I can remember to convert ${ }^{\circ} \mathrm{C}$ to K when using the Combined Gas Law to determine changes in V, P, or T of a gas.	A gas originally occupies 2.3 L at $56^{\circ} \mathrm{C}$ and 101.3 kPa . What will its volume be at $100^{\circ} \mathrm{C}$ and 105.7 kPa ?						
11. I can use particle diagrams to show the arrangement and spacing of atoms/molecules in different phases.	Draw a particle diagram to represent atoms of Li in each phase.						
				\bigcirc			
12. I can compare solids, liquids, and gases in terms of their relative kinetic energy, type of molecular motion, ability to completely fill a container, ability to change shape.		Solid	Liquid	Gas			
	Relative Kinetic Energy	$l o w$	moderate	high			
	Type of Molecular Motion	vibrations, only	vibration and rotation	vibration, rotation, and translation			
	Ability to Completely Fill Any Container	no	no	yes			
	Ability to Change Shape	no	yes	yes			

Identify which learning objectives you need to review before your midterm. ONLY do the last column after you've checked the answer key.

I can statement	Question that you must answer Only check one of the boxes to the right after you've doe the question and checked it.	YES. Got it.	Needs review	NOPE. Not yet.
1. I can define boiling point and vapor pressure.	Definition: boiling point - the temperature at which the vapor pressure of a liquid equals the pressure surrounding the liquid vapor pressure - the pressure exerted by a vapor in equilibrium with its condensed phases (solid or liquid) at a given temperature in a closed system			
2. I can state the condition of pressure that is used for "normal" boiling points.	The normal boiling point of a substance occurs at a pressure of \qquad atm/ \qquad kPa .			
3. I can state the relationship between atmospheric pressure and boiling point.	As the atmospheric pressure increases, the boiling point \qquad increases .			
4. I can determine the vapor pressure of ethanol, ethanoic acid, propane, or water at a given temperature.	What is the vapor pressure of ethanol at $56^{\circ} \mathrm{C}$? 39 kPa ($\mathbf{3 8}$ or 40 is ok too)			
5. I can state the relationship between the strength of IMF and vapor pressure.	As the strength of IMF increases \qquad , vapor pressure \qquad increases .			
6. I can state the change of phase occurring in fusion, solidification, condensation, vaporization, melting, boiling, sublimation, deposition, and freezing.	During fusion a substance changes from solid \qquad \qquad to _liquid \qquad During solidification a substance changes from \qquad liquid \qquad to \qquad solid During condensation a substance changes from \qquad gas to \qquad liquid During vaporization a substance changes from \qquad liquid to \qquad gas During melting a substance changes from \qquad solid to \qquad liquid During boiling a substance changes from \qquad liquid \qquad to \qquad gas During sublimation a substance changes from \qquad solid \qquad to \qquad gas During deposition a substance changes from \qquad gas to \qquad solid \qquad During freezing a substance changes from \qquad liquid to solid \qquad .			

I can statement	Question that you must answer	YES. Got it.	Needs review	NOPE. Not yet.
7. I can indicate if a phase change is exothermic or endothermic.	For each phase change listed, indicate whether the change is exothermic or endothermic. fusion/melting \qquad ENDO solidification/freezing \qquad condensation \qquad EXO vaporization/boiling \qquad ENDO sublimation \qquad ENDO deposition EXO			
8. Given a heating/cooling curve, I can determine the temperature at which a substance freezes/melts or condenses/vaporizes.	 What is the freezing point of this substance? What is the boiling point of this substance? $\quad 113^{\circ} \mathrm{C}$			
9. Given a heating/cooling curve, I can determine which sections of the curve show changes in potential energy.	 On the graph, circle the sections that show a change in potential energy.			
10. Given a heating/cooling curve, I can determine which sections of the curve show changes in kinetic energy.	 On the graph, circle the sections that show a change in kinetic energy.			

Station 4 Heat \& temperature with a review of math concepts
Identify which learning objectives you need to review before your midterm. ONLY do the last column after you've rotated to the next station

I can statement	Question that you must answer Only check one of the boxes to the right after you've doe the question and checked it.	YES. Got it.	Needs review	NOPE. Not yet.
1. I can state the temperature at which water freezes in ${ }^{\circ} \mathrm{C}$ and K.	What is the freezing point of water in ${ }^{\circ} \mathrm{C}$ and K ? $0^{\circ} \mathrm{C} \text { and } 273 \mathrm{~K}$			
2. I can state the temperature at which water melts in ${ }^{\circ} \mathrm{C}$ and K.	What is the melting point of water in ${ }^{\circ} \mathrm{C}$ and K ? $0^{\circ} \mathrm{C} \text { and } 273 \mathrm{~K}$			
3. I can state the temperature at which water vaporizes/boils in ${ }^{\circ} \mathrm{C}$ and K .	What is the boiling point of water in ${ }^{\circ} \mathrm{C}$ and K ? $100^{\circ} \mathrm{C} \text { and } 373 \mathrm{~K}$			
4. I can state the temperature at which water condenses in ${ }^{\circ} \mathrm{C}$ and K .	What is the condensing point of water in ${ }^{\circ} \mathrm{C}$ and K ? $100^{\circ} \mathrm{C} \text { and } 373 \mathrm{~K}$			
5. I can use Reference Table T to determine which "heat" equation is needed for a given problem.	Which heat equation should be used in each of the following: a. How much heat is needed to vaporize 100.0 g of water at $100^{\circ} \mathrm{C}$? $\mathbf{Q}=\mathbf{m H}_{\mathbf{V}}$ b. How much heat is needed to raise the temperature of 100.0 g of water by $35^{\circ} \mathrm{C}$? $\mathbf{Q}=\mathbf{m C} \Delta \mathbf{T}$ c. How much heat is needed to melt 100.0 g of ice at $0^{\circ} \mathrm{C}$? $\mathbf{Q}=\mathbf{m H}_{\mathbf{f}}$			
6. I can solve heat equations given the question and information on table T.	Solve each of the equations above (show work and answer here) a. $(100) \times 2260=226000 \mathrm{~J}$ b. $Q=(100)(4.18)(35)=14630 \mathrm{~J}$ c. $\mathbf{(1 0 0)}(\mathbf{3 3 4})=\mathbf{3 3 4 0 0 J}$			
7. I can define specific heat capacity, heat of fusion, heat of vaporization.	Definitions: specific heat capacity - the amount of heat required to increase the temperature of one gram of substance by $1^{0} \mathrm{C}$ (or K) heat of fusion - the amount of heat required to melt one gram of substance at its melting point heat of vaporization - the amount of heat required to vaporize one gram of substance at its boiling point			

I can statement	Question that you must answer	YES. Got it.	Needs review	NOPE. Not yet.
8. I can use the "heat" equations to solve for any variable, if I am given the other variables.	How many grams of water can be heated by $15.0^{\circ} \mathrm{C}$ using $13,500 \mathrm{~J}$ of heat? $215 \mathrm{~g}$ It takes 5210 J of heat to melt 50.0 g of ethanol at its melting point. What is the heat of fusion of ethanol? $104 \mathrm{~J} / \mathrm{g}$			
9. I can determine the number of significant figures in a measurement.	How many significant figures are there in 30.50 cm ? How many significant figures are there in 400.0 sec ?			
10. I can determine the answer to a math problem to the correct number of significant figures.	To the correct number of significant figures, what is the answer to $5.93 \mathrm{~mL}+4.6 \mathrm{~mL} ?$ 10.5 mL To the correct number of significant figures, what is the answer to $5.93 \mathrm{~cm} * 4.6 \mathrm{~cm} ?$ $27 \mathrm{~cm}^{2}$			
11. I can convert numbers into scientific notation from standard notation.	Convert 87,394,000,000,000 to scientific notation. $\mathbf{8 . 7 3 9 4} \mathbf{x}$ $\mathbf{1 0}^{\mathbf{1 3}}$ Convert 0.0000040934 to scientific notation. $\mathbf{1 0}^{\mathbf{- 6}}$ $\mathbf{4 . 0 9 3 4} \mathbf{~ x}$			
12. I can convert numbers into standard notation from scientific notation.	Convert 5.8×10^{9} to standard notation. $5,800,000,000$ Convert 4.3×10^{-5} to standard notation. 0.000043			
13. I can convert between different metric units by using "King Henry died by drinking chocolate milk".	$\begin{array}{lc} 9.3 \mathrm{~km}=? \mathrm{~m} & \mathbf{9 3 0 0} \mathbf{~ m} \\ 39,983 \mathrm{~mL}=? \mathrm{~kL} & \\ & \mathbf{0 . 0 3 9 9 8 3} \mathbf{~ k L} \end{array}$			

