Solutions:

Unit 7

Chapter 14 in textbook

GOALS: Students will be able to answer the questions: What is a solution? How can the concentration of a solution be expressed? How does the addition of solutes affect the freezing and boiling points of the solvent?
LEARNING TARGETS:I CAN...

1. Explain that a solution is a homogeneous mixture of a solute dissolved in a solvent. The solubility of a solute in a given amount of solvent depends on the temperature, pressure and the chemical nature of the solvents.
2. Explain the differences in properties such as density, particle size, molecular polarity, boiling and freezing point and solubility permit physical separation of the components of a mixture.
3. Define an electrolyte as a substance, which when dissolved in water, forms a solution capable of conducting an electric current. The ability of a solution to conduct an electric current depends on the concentration of ions.
4. Describe the preparation of a solution, given the molarity.
5. Apply the saying "like dissolves like" to real world situations, such as dry cleaning
6. Interpret solution concentration data:
a. Given an amount of solute and an amount of solvent, determine whether the solution is saturated, unsaturated, or supersaturated.
b. Given data for the amounts of solute and solvent in each solution, determine which solution is more concentrated.
7. Calculate solution concentrations in molarity (M), percent by mass, and parts per million (ppm)
8. Interpret and construct solubility curves
9. Use Solubility curves to distinguish among saturated, unsaturated and supersaturated solutions.
10. Use table F to determine what ions and compounds are soluble or insoluble.
11. Describe the effect adding a solute has on the boiling and freezing points of the solvent.
12. Compare/ contrast the effect of a molecular solute with the effects of ionic solutes on the boiling and freezing points a solvent.

	$\frac{\text { Vocabulary }}{\text { term }}$	Definition	EITHER definition in your own words or picture/ formula
1	Solution	a homogeneous mixture with one substance dispersed uniformly throughout another. CAN NOT be separated by filtration.	
2	Solute	the substance that is dissolved. If two liquids are mixed, the liquid present in the smaller amount is the solute	
3	Solvent	the substance that des the dissolving, usually water. If two liquids are mixed, the liquid present in the larger amount is the solvent.	
4	Soluble	something CAN dissolve	
5	Insoluble	something cannot dissolve	
6	Solubility	the maximum amount of a substance that can be dissolved in a specific amount of a solvent at a particular temperature	

		Definition \quad EITHER d	definition in your own words or picture/ formula
7	Saturated	a solution in which no more solute can be dissolved	
8	Unsaturated	a solution in which you can dissolved more solute	
9	Supersaturated	a solution that contains more dissolved solute than a saturated solution contains under the same conditions. This happens when a solution which was saturated at one temperature is cooled to a lower temperature; the addition of a single grain of solute will cause the unstable solution to precipitate solute until the solution is just saturated at the lower temperature.	
10	Electrolyte	a substance that, when dissolved in water, produce a solution that conducts electricity due to the presence of mobile ions. Soluble ionic substances are electrolytes	
11	Non- Electrolyte	Cannot conduct electricity when dissolved in water. Molecular substances are NON-electrolytes.	
12	"Like dissolves Like"	a general rule describing which substances will dissolve in another substance. Two molecular (covalent) substances are likely to dissolve in each other as they are alike in their boning type. An ionic substance won't dissolve in a molecular substance as they are unlike in their bonding type. Water is an exception; because it is such a strongly polar molecular compound, many ionic substances will dissolve in it, making it the "universal solvent"	
13	Concentration	a measure of the quantity of solute dissolved in a given amount of solvent or solution	
14	Precipitate	A solid produced during a chemical reaction between two solutions	
15	Molarity	a measure of concentration; the number of moles of solute per liter of solution.	
16	Parts Per Million	(ppm) a measure of concentration used to express very low concentrations. A 1 ppm solution would contain 1 gram of solute per million grams of solution. Jeopardy	
17	Colligitive Properties	boiling point elevation and freezing point depression are dependent on the concentration of solute in solution.	

Calendar for unit 7 Regents Chemistry: Red (2 \& 3A) and Yellow (9 \& 8A) classes

2/5	6	7	8	9
S	A	B	C	D
Topic 7.1: Properties of water HW: Real world assignment (separate packet)	Topic 7.2 Types of saturation \& POGIL table G	Topic 7.3 Factors that affect solubility \& mini-lab 7.1 HW- Assignment \#2	$\begin{gathered} \text { Topic } 7.4 \text { The } \\ \text { solution process } \\ \text { HW: Assignment \#3 } \end{gathered}$	Topic 7.5 Soluble vs insoluble " using Table F" POGIL HW: Pre-lab due Monday
	Topic 7.2 continued HW= Assignment \#1		Chemistry Work Period	
2/12	13	14	15	16
E	S	A	B	C
Lab 7.2	Topic 7.6 Electrolytes HW: Assignment \#4 (review for quiz)	Quiz Begin topic 7.7 (Molarity POGIL) HW: Assignment \#5	Topic 7.7 Molarity (continued) \& topic 7.8 parts per million	Topic 7.8 Colligative properties/ Lab
Lab/ table F work time HW: lab due \qquad		Chemistry Work Period		Chemistry Work Period
February Break!!!				
2/26	27	28	3/1	3/2
D	E	5	A	B
Topic 7.8 continued	Practice with Solutions	Unit 7 Test		
	Review for test			

Calendar for unit 7 Regents Chemistry: Blue (5 \& 4B) and Green (7 \& 8B) Classes:

2/5	6	7	8	9
S	A	B	C	D
Topic 7.1: Properties of water HW: Real world assignment (separate packet)	Topic 7.2 Types of saturation \& POGIL table G HW= Assignment \#1	Topic 7.2 continued	Topic 7.4 The solution process HW: Assignment \#3	Topic 7.5 Soluble vs insoluble "using Table F" POGIL HW: Pre-lab due Monday
Chem. work period		Topic 7.3 Factors that affect solubility \& mini-lab 7.1 HW- Assignment \#2		Chemistry Work Period
2/12	13	14	15	16
E	S	A	B	C
Lab 7.2	Lab/table F work time HW: lab due \qquad	Quiz Begin topic 7.7 (Molarity POGIL) HW: Assignment \#5	Topic 7.7 Molarity (continued) \& topic 7.8 parts per million	Topic 7.8 Colligative properties/ Lab
	Topic 7.6 Electrolytes HW: Assignment \#4 (review for quiz)		Chemistry Work Period	
February Break				
2/26	27	28	3/1	3/2
D	E	S	A	B
Topic 7.8 continued	Review for test	Chemistry Work Period		
Practice w/ Solns		Unit 7 Test		

Properties of Water: What do we know about water in the real world and how is this connected to the

A. What do we know about water?

a. Let's draw its Lewis Dot diagram
b. Water molecules are "pulled" or given partial charges due to differences in which results in \qquad
\qquad -
B. What types of substances are most likely to dissolve in water?

\qquad dissolves \qquad "

What does this mean?
a. We just determined that water is a \qquad molecule, so it is likely to dissolve
\qquad substances. Because it has \qquad (partial \qquad and partial \qquad) it can also dissolve \qquad substances.

Examples of soluble substances in water are NaCl (\qquad) and

$$
\mathrm{C}_{3} \mathrm{H}_{7} \mathrm{OH}(\square) .
$$

Examples of insoluble substances: Oil (\qquad)

b. What about octane (gasoline) which is a \qquad molecule. It is most likely to mix with \qquad substances.

Examples of soluble substances in gasoline: benzene (\qquad

Examples of insoluble substances: $\mathrm{H}_{2} \mathrm{O}$ (\qquad and $\mathrm{NaCl}($ \qquad

Topic
7.2

Types of Saturation: How do we know the type of solution and what does this mean about the amount of solute versus solvent? How can table G help to determine these answers?
A. What are the 3 different types of solutions?

1. Saturated Solution- \qquad
no more solute dissolves

Ex. adding any more solute to a solution will cause the solute to settle on the bottom of the container - this is how you can determine if a solution is saturated.

2. Unsaturated Solution-

\qquad

\qquad
\qquad
Ex. adding more solute will dissolve

3. Supersaturated Solution-

\qquad
\qquad
\qquad

Ex. can only be produced by heating a saturated solution, dissolving more solute, and then cooling it very slowly and carefully. If you did this
 carefully enough, you could keep the excess solute dissolved for a while.

POGIL Time

Learning targets:

- I can learn how solubility varies with temperature
- I can read table G and explain what each section represents
- I can use definitions discussed in this unit to determine how temperature can influence solubility

Table G POIGL is printed here in student packets, but not displayed here.
A. Solubility is defined as the amount of \qquad that can dissolve in a given solvent.
B. Temperature and solubility:
a. Solids:
i. As the temperature rises, the solubility of a solid \qquad .
ii. What real world example is there from your POGIL to help you remember this?
b. Gases:
i. The 3 gases on table G can be identified because from left to right their curves \qquad .

1. The three gases are:
ii. This means that as the temperature rises, the solubility of gases \qquad .
iii. Think of a cup of pop sitting at room temperature- what starts to happen?
C. What does table G tell us?
a. If a solution's concentration is at a point on it's curve, that solution is \qquad .
b. If a solution's concentration is at a point below it's curve, that solution is \qquad .
c. If a solution's concentration is at a point above it's curve, that solution is \qquad .
d. Practice with table G: Answer the following questions related to table G asking for help and connecting it to real world scenarios as suggested in the question.
2. What is unusual about the curve for NaCl dissolving in water?
a. Why is this important? (connect to real world- where do we find $\mathrm{NaCl}(\mathrm{aq})$?)
3. How much KI can be dissolved in 100 mL of water at $10^{\circ} \mathrm{C}$?
4. If 50 grams of KI was dissolved in 100 mL of water at $10^{\circ} \mathrm{C}$, would the solution be unsaturated, saturated, or supersaturated? \qquad
5. If 150 grams of KI was dissolved in 100 mL of water at $10^{\circ} \mathrm{C}$, would the solution be unsaturated, saturated, or supersaturated? \qquad

CHECKPOINT! (look for instructions on the screen or ask your teacher) influence solubility?
D. Volume: How can we expand on Table G to determine the type of solution if the volume isn't 100 mL ?

1. How much KCl must you dissolve in 500 mL of water to make a saturated solution at $60^{\circ} \mathrm{C}$ to make a saturated solution?
2. If 300 grams of KI was dissolved in 600 mL of water at $10^{\circ} \mathrm{C}$, would the solution be unsaturated, saturated, or supersaturated? \qquad
3. A solution of NaNO_{3} containing 168 g of solution in 200 mL of water at $50^{\circ} \mathrm{C}$ is unsaturated, saturated, or supersaturated? \qquad
4. 100 mL of a saturated solution of KNO_{3} at $50^{\circ} \mathrm{C}$ is cooled to $30^{\circ} \mathrm{C}$. How much KNO_{3} will precipitate?
E. Pressure:
a. For \qquad solutes, pressure has NO effect.
b. For \qquad solutes, as pressure \qquad solubility \qquad
i. For example

5. According to Table G, which substance forms an unsaturated solution when 80 . grams of the substance are stirred into 100 . grams of $\mathrm{H}_{2} \mathrm{O}$ at $10 .{ }^{\circ} \mathrm{C}$?
A) KNO_{3}
B) KI
C) NH_{3}
D) NaCl
6. A solute is added to water and a portion of the solute remains undissolved. When equilibrium between the dissolved and undissolved solute is reached, the solution must be
A) dilute
B) saturated
C) unsaturated
D) supersaturated
7. An unsaturated solution is formed when 80 . grams of a salt is dissolved in 100. grams of water at $40 .{ }^{\circ} \mathrm{C}$. This salt could be
A) NaNO_{3}
B) NaCl
C) KNO_{3}
D) KCl
8. A solution contains 35 grams of KNO_{3} dissolved in 100 grams of water at $40^{\circ} \mathrm{C}$. How much more KNO_{3} would have to be added to make it a saturated solution?
A) 4 g
B) $24 \mathrm{~g} \mathrm{C)} 12 \mathrm{~g}$
D) 29 g
9. Which salt on table G is least soluble in water at $20^{\circ} \mathrm{C}$? \qquad
10. How many grams of potassium chloride (chemical formula of \qquad) can be dissolved in $\mathbf{2 0 0 g}$ of water at $80^{\circ} \mathrm{C}$?
11. At $30 \mathrm{oC}, 90 \mathrm{~g}$ of sodium nitrate (chemical formula of \qquad) is dissolved in 100 g of water, Is this solution saturated, unsaturated or supersaturated?
12. Give the formula and phase of matter of ONE compound that shows a decrease in solubility from $0^{\circ} \mathrm{C}$ to $100^{\circ} \mathrm{C}$.

$$
\begin{aligned}
& \text { Formula__ } \\
& \text { Phase of matter }
\end{aligned}
$$

9. Which salt is most soluble at $10^{\circ} \mathrm{C}$?
10. Which salt is least soluble at $50^{\circ} \mathrm{C}$?
11. Which salt is least soluble at $90^{\circ} \mathrm{C}$?
12. A saturated solution of potassium chlorate is formed from one hundred grams of water. If the saturated solution is cooled from $80^{\circ} \mathrm{C}$ to $50^{\circ} \mathrm{C}$, how many grams of precipitate are formed?
A. Definition:

Solutions are \qquad mixtures that may be a solid, liquid or gas.
B. The composition the solute and solvent determines whether a substance will dissolve.
a. The phrase "
dissolves
" means that:
C. Substances that are \qquad will react MORE quickly than those that are \qquad .
D. You can make a solid solute dissolve faster in three ways:

1. Grind up the solute to increase the \qquad .
2. \qquad the solution to increase the contact of solute with solvent
3. \qquad the solution to give the ions or molecules more average kinetic energy
$* * *$ Note that if a substance is not soluble (aka \qquad), no amount of stirring will dissolve it. Stirring will speed up the dissolution rate, but does not determine the amount that a solvent can dissolve.
E. What if it's a gas? You can make a gas solute dissolve faster in two ways:
4. \qquad the solution so that the gas particles stay strapped in the liquid for a longer time.
5. Increase the \qquad on the system.

6. The solubility of $\mathrm{KCl}(\mathrm{s})$ in water depends on the
A) pressure on the solution
B) rate of stirring
C) size of the KCl sample
D) temperature of the water
7. Given the diagram below that shows carbon dioxide in an equilibrium system at a temperature of 298 K and a pressure of 1 atm :

Which changes must increase the solubility of the carbon dioxide?
A) decrease pressure and increase temperature
B) increase pressure and increase temperature
C) decrease pressure and decrease temperature
D) increase pressure and decrease temperature

STOP	STOP	STOP	STOP	STOP

Topic $7.4 \rightarrow$ The solution process. What does it mean to "dissolve"?

STORY TIME!

Summary:

1. After watching the animation, how is my story related to the animation?
2. What do you think this substance is? What do you notice about it that makes you think that?
3. After viewing the animation with sound, does this confirm or deny your thoughts from questions 2 and 3? Provide support (cont) \square The solution process. What does it mean to "dissolve"?

Solubility: \qquad

Answer the question about the diagram to the right here.

Figure 16.2 In a saturated solution, a state of dynamic equilibrium exists between the solution and the excess solute. The rate of solvation (dissolving) equals the rate of crystallization, so the total amount of dissolved solute remains constant. Inferring What would happen if you added more solute?

View Simulation: https://phet.colorado.edu/en/simulation/soluble-salts

After viewing the simulation, does your answer above agree? If no, explain WHAT happens.

When the solution is saturated and excess solute remains at the bottom, there is an EQUILIBRIUM occurring in which solute is dissolving at the same rate as it is crystallizing out of solution, so there is no net change in the solution concentration.

When a substance dissolves, two things must happen:

Freak attractions within the	Form new attractions between
Break attractions within the	and
This \quad Energy	

These two processes are in opposition to each other and depending on which one is more "powerful" determines if energy is absorbed or released overall. We can write the final result as a dissociation equation (Used table \qquad to help with this!)
$\mathrm{NaOH}(\mathrm{s})$

$\operatorname{LiBr}(\mathrm{s})$

$\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{s})$
$\mathrm{KNO}_{3}(\mathrm{~s})$

+44.51 kJ	Endothermic or Exothermic
	Endothermic or Exothermic
	Endothermic or Exothermic
	Endothermic or Exothermic

Assignment
7.3

A) linear	B) symmetrical	C) nonpolar	D) polar
molecules are			

\qquad 2. In an aqueous solution of potassium chloride, the solute is
A) KCl
B) Cl
C) $\mathrm{H}_{2} \mathrm{O}$
D) K
3. Which diagram best illustrates the ion-molecule attractions that occur when the ions of $\mathrm{NaCl}(\mathrm{s})$ are added to water?
A)

B)

C)

D)

Base your answers to questions 4 through 7 on the information below and on your knowledge of chemistry.

A solution of ethylene glycol and water can be used as the coolant in an engine-cooling system. The ethylene glycol concentration in a coolant solution is often given as percent by volume. For example, $100 . \mathrm{mL}$ of a coolant solution that is $40 . \%$ ethylene glycol by volume contains $40 . \mathrm{mL}$ of ethylene glycol diluted with enough water to produce a total volume of 100 mL . The graph below

Freezing Points of Coolants

Percent by Volume of Ethylene Glycol (\%)
4. Explain, in terms of particle distribution, why a coolant solution is a homogeneous mixture.
5. Explain, in terms of the molecular polarity, why ethylene glycol dissolves in water to form a solution.
6. Identify the percent by volume of ethylene glycol in a solution that freezes at $-10 .{ }^{\circ} \mathrm{C}$.
7. One engine-cooling system has a volume of 6400 mL . Determine the volume of ethylene glycol in the completely filled engine-cooling system when the concentration of ethylene glycol is 50% by volume. .

Name: \qquad

Solubility Guidelines POGIL

I. Writing Double Replacement Reactions - remember this?!

Step 1: When switching ions in compounds, don't forget that + ions will only bond with - ions, and vice versa.

Example: $\mathrm{NaCl}+\mathrm{MgO} \quad \mathrm{Na}$ (positive) will bond with O (negative)
Cl (negative) will bond with Mg (positive)
Step 2: When writing new compounds, first look up their oxidation states and criss cross their charges. Also - positive ions come first in ionic compounds!

Step 3: Balance your equation, to account for conservation of atoms.
Example: $2 \mathrm{NaCl}+\mathrm{MgO} \longrightarrow \mathrm{Na}_{2} \mathrm{O}+\mathrm{MgCl}_{2}$

Practice: For each set of reactants, determine the 2 products.

3. $\quad\left(\mathrm{NH}_{4}\right) \mathrm{Cl}+\mathrm{Mg}(\mathrm{OH})_{2} \longrightarrow \longrightarrow 1$
II. Imagine if there was a way to predict if students will turn in their homework on time. The tables/guidelines to follow might look something like this: On the left side of the first table are the students that WILL turn in their homework on time. We know that sometimes there are conditions that cause a student to turn in their homework late. You see those conditions to the right, in the "Unless" column. In the second table, there are students that will NOT turn in their homework on time. But sometimes these students do shock us all and turn in their homework on time, so there is also an "Unless" column to account for these exceptions.

Students that WILL turn in their homework on time	Unless . .
Shirley	
Joe	She loses her planner
Linda	Her dog eats it
Brenda	She has a soccer game the night before
Lori	Margaret

Students that will NOT turn in their homework on time	Unless ...
Paula	
Tyler	He has no sports the night before
Jake	Quarter grades end the next day
Raymond	She has written it in her planner
Phil	

Using the above information, mark a H if a homework is turned in on time and an N if it will not.
__ Shirley has a soccer game the night before Tyler went to bed early
Sally has written her homework down in her planner.
Lori's dog ate her homework.
Paula loses her planner.
Phil knows that the quarter ends tomorrow
Joe knows that the quarter ends tomorrow
Margaret went to bed early
Sally has not written her homework down in her planner.
Jake finds his planner
___ Brenda loses her planner

List all of the students that will have their homework turned in on time, assuming they ALL have a soccer game the night before. \qquad
p. 20
III. You will go through this same process to find out if an ion will dissolve in water. If something is able to dissolve, it is called \qquad . If something will NOT dissolve it is called \qquad . When something is dissolved in water, it is known as an \qquad solution. If an insoluble compound is mixed with water it is seen as a precipitate. You can see it either floating on the top of the water, or sunk at the bottom of the container.

This is Table F - Solubility Guidelines for Aqueous Solutions

Ions That Form Soluble Compounds	Exceptions	Ions That Form Insoluble Compounds*	Exceptions
Group 1 ions ($\mathrm{Li}^{+}, \mathrm{Na}^{+}$, etc.)		carbonate ($\mathrm{CO}_{3}{ }^{2-}$)	when combined with Group 1 ions or ammonium $\left(\mathrm{NH}_{4}{ }^{+}\right)$
ammonium $\left(\mathrm{NH}_{4}{ }^{+}\right)$		chromate ($\mathrm{CrO}_{4}{ }^{2-}$)	when combined with Group 1 ions, $\mathrm{Ca}^{2+}, \mathrm{Mg}^{2+}$, or ammonium $\left(\mathrm{NH}_{4}{ }^{+}\right)$
nitrate $\left(\mathrm{NO}_{3}{ }^{-}\right)$			
$\begin{aligned} & \text { acetate }\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{O}_{2}-\right.\text { or } \\ & \left.\mathrm{CH}_{3} \mathrm{COO}^{-}\right) \end{aligned}$		phosphate $\left(\mathrm{PO}_{4}{ }^{3-}\right)$	when combined with Group 1 ions or ammonium $\left(\mathrm{NH}_{4}{ }^{+}\right)$
hydrogen carbonate $\left(\mathrm{HCO}_{3}^{-}\right)$		sulfide (S^{2-})	when combined with Group 1 ions or ammonium $\left(\mathrm{NH}_{4}{ }^{+}\right)$
chlorate $\left(\mathrm{ClO}_{3}{ }^{-}\right)$		hydroxide (OH^{-})	when combined with Group 1
halides ($\mathrm{Cl}^{-}, \mathrm{Br}^{-}, \mathrm{I}^{-}$)	when combined with $\mathrm{Ag}^{+}, \mathrm{Pb}^{2+}$, or $\mathrm{Hg}_{2}{ }^{2+}$		ions, $\mathrm{Ca}^{2+}, \mathrm{Ba}^{2+}, \mathrm{Sr}^{2+}$, or ammonium $\left(\mathrm{NH}_{4}{ }^{+}\right)$
sulfates $\left(\mathrm{SO}_{4}{ }^{2-}\right)$	when combined with Ag^{+}, $\mathrm{Ca}^{2+}, \mathrm{Sr}^{2+}, \mathrm{Ba}^{2+}$, or Pb^{2+}	*compounds having very low solubility in $\mathrm{H}_{2} \mathrm{O}$	

How is this table similar to the homework table?
How is it different?

Using the table, determine if each compound is soluble or insoluble. If it is insoluble, it will form a precipitate. Mark a S if it is soluble, and an I if it is insoluble in water.NaClCaCrO_{4}
$-\mathrm{NaOH}$
$-\mathrm{PbBr}_{2}$
$\ldots \mathrm{MgSO}_{4}$
$-\mathrm{Li}_{2}$
$\mathrm{L}_{2} \mathrm{~S}$
$-\mathrm{H}_{2} \mathrm{CO}_{3}$
$-\mathrm{K}_{2} \mathrm{CO}_{3}$
$\ldots \quad \mathrm{Fe}(\mathrm{OH})_{2}$
_ $\mathrm{Mn}\left(\mathrm{ClO}_{3}\right)_{4}$
__- $\mathrm{Ag}_{2} \mathrm{SO}_{4}$
Write out 3 compounds (different from the list above) that would be soluble in water:
(note that you must have a positive ion and a negative ion in your compound and it must be made neutral)

Write out 3 compounds (different from the list above) that would be insoluble in water:
(note that you must have a positive ion and a negative ion in your compound and it must be made neutral)

Practice Regents Questions for Unit 7 - Solutions: Show all work where necessary

1. Based on Table F, identify one ion that reacts with Br^{-}ions in an aqueous solution to form an insoluble compound. [1] \qquad
2. What is the mass of NH 4 Cl that must dissolve in 200. grams of water at $50 .{ }^{\circ} \mathrm{C}$ to make a saturated solution?
a. 26 g
b. 84 g
c. 42 g
d. 104 g
3. A 1.0-gram strip of zinc is reacted with hydrochloric acid in a test tube. The unbalanced equation below represents the reaction.

$$
\mathrm{Zn}(\mathrm{~s})+\mathrm{HCl}(\mathrm{aq}) \rightarrow \mathrm{H}_{2}(\mathrm{~g})+\mathrm{ZnCl}_{2}(\mathrm{aq})
$$

Explain, using information from Reference Table F, why the symbol (aq) is used to describe the product ZnCl 2 . [1]
4. Based on Table G, determine the total mass of NH 3 that must be dissolved in 200. grams of water to produce a saturated solution at $20 .{ }^{\circ} \mathrm{C}$. \qquad
5. Which compound is least soluble in water at $60 .{ }^{\circ} \mathrm{C}$?
a. KClO 3
b. NaCl
c. KNO 3
d. NH 4 Cl

Checkpoint!

 and \qquad combine to form a mixtureA. A solution is formed when a \qquad that is \qquad . When working with water, we know that there is a partial positive (+) (\qquad and partial negative (-) (___) end. When two substances dissolve in each other, a solution is made. This process is a \qquad change.
B. What substances that we know of can conduct electricity?
a.
conduct electricity well because of their structure (***
i. These \qquad create a functional "path" for electricity to "flow" through.

b. \qquad conduct electricity only when we can get \qquad . So when is this possible?
i. \qquad the ionic substance
ii. \qquad the ionic substance
C. Let's talk about the word "electrolyte." It means:

D. What does this look like in terms of particle behavior?

A Distilled water does not conduct a current.

B
Positive and negative ions fixed in a solid do not conduct a current.

In solution, positive and negative ions move and conduct a current.

Will a substance that is ionic always conduct? \qquad it must be \qquad on table F for it to be an electrolyte.

Which of the following are electrolytes?
$\mathrm{H}_{2} \mathrm{O}$
LiBr
SrCO_{3}
$\mathrm{K}_{2} \mathrm{CO}_{3}$
HCl
$\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$

7.4
\qquad 1. Which compound is insoluble in water?
A) potassium bromide
B) sodium bromide
C) silver bromide
D) calcium bromide
\qquad 2. Which barium salt is insoluble in water?
A) BaCO_{3}
B) $\mathrm{Ba}\left(\mathrm{NO}_{3}\right)_{2}$
C) $\mathrm{Ba}\left(\mathrm{ClO}_{4}\right)_{2}$
D) BaCl_{2}
\qquad 3. According to Table F, which substance is most soluble in water?
A) CaCO_{3}
B) $\mathrm{Na}_{2} \mathrm{CO}_{3}$
C) AgCl
D) SrSO_{4}
\qquad 4. Solubility data for four different salts in water at $60^{\circ} \mathrm{C}$ are shown in the table below.

Salt	Solubility in Water at $\mathbf{6 0} \mathbf{C}$
A	10 grams $/ 50$ grams $\mathrm{H}_{2} \mathrm{O}$
B	20 grams $/ 60$ grams $\mathrm{H}_{2} \mathrm{O}$
C	30 grams $/ 120$ grams $\mathrm{H}_{2} \mathrm{O}$
D	40 grams $/ 80$ grams $\mathrm{H}_{2} \mathrm{O}$

Which salt is most soluble at $60^{\circ} \mathrm{C}$?
A) A
B) B
C) C
D) D
5. At which temperature can water contain the most dissolved oxygen at a pressure of 1 atmosphere?
A) $10 .{ }^{\circ} \mathrm{C}$
B) $20 .{ }^{\circ} \mathrm{C}$
C) $30 .{ }^{\circ} \mathrm{C}$
D) $40,{ }^{\circ} \mathrm{C}$
9. Base your answer to the following question on the information below.
Ammonium chloride is dissolved in water to form a $0,10 \mathrm{M} \mathrm{NHACl}($ (aq) solution. This dissolving process is represented by the equation below.

$$
\mathrm{NH}_{4}\left(\mathrm{l}(\mathrm{~s})+\text { heart } \xrightarrow{\mathrm{HO}} \mathrm{NH}_{4}^{+}+(\text {aq })+\mathrm{Cl}^{-}(\mathrm{aq})\right.
$$

a. Explain, in terms of ions, why a 10,0 -milililiter sample of $0,30 \mathrm{M} \mathrm{NH4Cl}($ (oq) is a better conductor of electricity than a 100 -milililter sample of the $0.10 \mathrm{MNH} \mathbf{~ N C}($ (oq).
\square

[^0]
Molarity

How can the concentration of a solution be expressed quantitatively?

Why?

When you buy a bottle of a certain brand of lemonade you expect it to taste just as sweet as the last time you bought that kind of lemonade. Likewise, when doctors prescribe a certain ointment, they expect the concentration of medicine to be consistent. How do companies ensure their products taste or perform the same every time you purchase them? Many companies, including pharmaceutical companies, keep track of the concentration of a solution by measuring its molarity-a ratio of number of solute particles to the volume of solution. In this activity you will learn about molarity and how to represent concentration quantitatively.

Model 1 - Lemonade Mixtures*

Lemonade Solution 1

Lemonade Solution 2

*Both pitchers were filled with enough water (solvent) to provide 2 liters of solution.
Dissolved Lemonade Mix particle (solute) = •

1. Refer to Model 1:
a. What is the solvent in this scenario?
b. What is the solute in this scenario?
c. What is a dissolved lemonade mix particle represented by?
2. Circle the word that best completes each sentence below and justify your answer based on the diagrams in model 1.
a. Lemonade solution 1 has (more/ less/ the same) volume of solution 2. How do you know?
b. Lemonade solution 1 has (more/ less/ the same) quantity of solute of solution 2. Describe how you know in terms of number of particles.
3. Lemonade solutions 2 is considered to be concentrated and lemonade solution 1 is considered to be dilute. Examine the two pictures from model 1 . List two ways to differentiate a concentrated solution from a dilute solution.
4. A glass is filled with the concentrated lemonade from model 1.
a. Is the solution in the glass the same concentration as the solution in the pitcher?
b. Does the solution in the glass contain the same number of solute particles as the solution in the pitcher? If no, explain how your answer to part a can be true. Hint: Condsider both amount of solute and solvent.
5. Do the terms "concentrated" and "dilute" provide any specific information about the quantities of solute or solvent in a solution? Explain.

Checkpoint!

Let's define a few things:

Molarity:

$$
\text { Molarity }(M)=\square
$$

***Note that the volume is the total volume of the solution, NOT the volume of the solvent alone. Practice Problems:

1. A solution has a volume of 250 mL and contains .70 moles NaCl . What is its molarity
2. Household bleach is a dilute aqueous solution of sodium hypochlorite (NaClO). How many moles of solute are present in 1.5 L of a .70 M NaClO ?
3. ?A solution has a volume of 2.0 L and contains 36.0 grams of glucose $\left(\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}\right)$. If the molar mass of glucose is 180 grams/ mole, what is the molarity of the solution (2 steps required)?
4. How many moles of ammonium nitrate are in 335 mL of $0.425 \mathrm{M} \mathrm{NH}_{4} \mathrm{NO}_{3}$? (2 steps involved)
5. How many moles of solute are in 250 mL of $2.0 \mathrm{M} \mathrm{CaCl}_{2}$? How many grams of CaCl_{2} is this?
A. Molarity is GREAT, but sometimes quantities of solute are SO \qquad that we use another calculation called parts per million.
a. Many agencies use parts per million to describe limitations and environmental regulations.
b. Parts per million is defined as: \square

$$
\text { parts per million }=\frac{\text { mass of solute }}{\text { mass of solution }} \times 1000000
$$

B. Let's try a practice problem or 2
a. A solution consists of 0.25 grams of solute dissolved in 1000 grams of solution. What is its concentration in ppm?
b. A 100 gram sample of stream water is found to contain 0.0032 grams of MTBE (a gasoline additive) What is the concentration of MTBE, in ppm?
c. The EPA finds the concentration of arsenic in a stream near a local factory is 5 ppm . If the volume of the sample was 1000 g , how much arsenic was in the water?

Let's combine our practice:

1. What is the molarity of 1.5 liters of an aqueous solution that contains 52 grams of lithium fluoride, LiF, (gramformula mass $=26$ grams $/ \mathrm{mole}$)?
a. 1.3 M
b. 3.0 M
c. 2.0 M
d. 0.75 M

Base your answers to question 2 on the information below.
The dissolving of solid lithium bromide in water is represented by the balanced equation below.

$$
\mathrm{LiBr}(\mathrm{~s}) \xrightarrow{\mathrm{H}_{2} \mathrm{O}} \mathrm{Li}^{+}(\mathrm{aq})+\mathrm{Br}^{-}(\mathrm{aq})
$$

2. Calculate the total mass of $\mathrm{LiBr}(\mathrm{s})$ required to make 500.0 grams of an aqueous solution of LiBr that has a concentration of 388 parts per million. Your response must include both a correct numerical setup and the calculated result. [2]
3. What is the total mass of solute in 1000 . grams of a solution having a concentration of 5 parts per million?
a. 0.005 g
b. 0.5 g
c. 0.05 g
d. 5 g

Been Having problems concentrating lately?
A. When a solute dissolves in water, not only the properties of the solute change, but the properties of the solvent (usually \qquad because we are dealing with aqueous solutions) change as well. You observed these changes in your investigation before break. Let's review and make sure we have a solid understanding of how this works.
B. ${ }^{* * *}$ Properties of a solution different from the pure solvent used to make that solution
***Differences in properties have to do with the \qquad in the solution.
C. What are the changes that we have to know?

Boling point changes		Freezing point changes
Pure solvent	Solution witho solute	
Boiling point		

How does this work?

The solute and solvent are \qquad to one another. This "blocks" the solvent from being able to escape. The amount of
\qquad than normal so it takes \qquad energy to get the liquid to boil.

The solute tries to insert itself into the solid crystal that is forming.
This means that the \qquad energy must decrease even more than normal to get the solid to form.

How much will it change by?

The actual values are NOT important, but the \qquad solute particles (or ions) dissolved, the \qquad the boiling point and the \qquad the freezing point.
D. Let's practice

1. A solution consists of 0.50 mole of CaCl 2 dissolved in 100 . grams of $\mathrm{H}_{2} \mathrm{O}$ at $25^{\circ} \mathrm{C}$. Compared to the boiling point and freezing point of 100 . grams of H 2 O at standard pressure, the solution at standard pressure has
A) a higher boiling point and a higher freezing point
B) a higher boiling point and a lower freezing point
C) a lower boiling point and a lower freezing point
D) a lower boiling point and a higher freezing point
2. Which aqueous solution of KI freezes at the lowest temperature?
A) 1 mol of KI in $500 . \mathrm{g}$ of water
B) 2 mol of KI in 500. g of water
C) 1 mol of KI in 1000 g of water
D) 2 mol of KI in $1000 . \mathrm{g}$ of water
3. Compared to the freezing point of $1.0 \mathrm{M} \mathrm{KCI}(a q)$ at standard pressure, the freezing point of 1.0 M $\mathrm{CaClz}(\mathrm{aq})$ at standard pressure is
A) higher
B) the same
C) lower

Learning Target	I can	I need to review	I don't get it YET
1.Explain that a solution is a homogeneous mixture of a solute dissolved in a solvent. The solubility of a solute in a given amount of solvent depends on the temperature, pressure and the chemical nature of the solvents.			
2. Explain the differences in properties such as density, particle size, molecular polarity, boiling and freezing point and solubility permit physical separation of the components of a mixture.			
3.Define an electrolyte as a substance, which when dissolved in water, forms a solution capable of conducting an electric current. The ability of a solution to conduct an electric current depends on the concentration of ions. 4.Describe the preparation of a solution, given the molarity. 5. Apply the saying "like dissolves like" to real world situations, such as dry cleaning 6. Interpret solution concentration data: a. Given an amount of solute and an amount of solvent, determine whether the solution is saturated, unsaturated, or supersaturated. Given data for the amounts of solute and solvent in each solution, determine which solution is more concentrated. 7.Calculate solution concentrations in molarity (M), percent by mass, and parts per million (ppm). 8. Interpret and construct solubility curves 9. Use Solubility curves to distinguish among saturated, unsaturated and supersaturated solutions. 10. Use table F to determine what ions and compounds are soluble or insoluble.			
11. Describe the effect adding a solute has on the boiling and freezing points of the solvent.			
12. Compare/ contrast the effect of a molecular solute with the effects of ionic solutes on the boiling and freezing points a solvent.			

Review for Solutions Unit test:
1.

At standard pressure, how do the boiling point and the freezing point of $\mathrm{NaCl}(\mathrm{aq})$ compare to the boiling point and the freezing point of $\mathrm{H} 2 \mathrm{O}(\ell)$?

1. Both the boiling point and the freezing point of $\mathrm{NaCl}(\mathrm{aq})$ are lower.
2. Both the boiling point and the freezing point of $\mathrm{NaCl}(\mathrm{aq})$ are higher.
3. The boiling point of $\mathrm{NaCl}(\mathrm{aq})$ is lower, and the freezing point of $\mathrm{NaCl}(\mathrm{aq})$ is higher.
4. The boiling point of $\mathrm{NaCl}(\mathrm{aq})$ is higher, and the freezing point of $\mathrm{NaCl}(\mathrm{aq})$ is lower.

5. \square

The table below gives information about four aqueous solutions at standard pressure.

Four Aqueous Solutions

Aqueous Solution	Concentration (M)	Solute
A	2.0	BaCl_{2}
B	2.0	NaNO_{3}
C	1.0	$\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$
D	1.0	$\mathrm{~K}_{2} \mathrm{SO}_{3}$

Which list of solutions is arranged in order from highest boiling point to lowest boiling point?

1. A, B, D, C
2. A, C, B, D
3. C, D, B, A
4. D, B, C, A
5. \square

Which unit can be used to express the concentration of a solution?

1. I/s 3. ppm
2. J/g $\quad 4 . \mathrm{kPa}$
3.

According to Table F, which compound is soluble in water?

1. bariumphosphate	3. silver iodide
2. calcium sulfate	4. sodiumperchlorate

5. \square

What is the concentration of a solution, in parts per million, if 0.02 gram of $\mathrm{Na}_{3} \mathrm{PO}_{4}$ is dissolved in 1000 grams of water?

1. 20 ppm
2. 2 ppm
3. 0.2 ppm
4. 0.02 ppm
5. \square

Base your answer to the question on the information below.
Two alcohols that are used in our everyday lives are rubbing alcohol and ethylene glycol Rubbing alcohol is used as an antiseptic. Ethylene glycol is the min ingredient in antiffeeze, which is used in automobile cooling systems.

Figure 1

Which of the following is a correct numerical setup for calculating the total number of moles of ethylene glycol needed to prepare 2.50 liters of a 10.0 M solution?

1. $10.0 \mathrm{M}=\frac{x \mathrm{~mol}}{2.50 \mathrm{~L}}$
2. $x \mathrm{~mol}=\frac{10.0 \mathrm{M}}{2.50 \mathrm{~L}}$
3. $10.0 \mathrm{~L}=\frac{x \mathrm{~mol}}{2.50 \mathrm{M}}$

[^0]: 9b. Is this reaction endo or exothermic?

